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It is impossible to distinguish by means of a least-squares analysis between a centrosymmetric structure 
and a corresponding non-centrosymmetric one by simple expansion of the set of parameters over the qut.s- 
tionable inversion centre. 

In many cases the space group of a crystal is not uniquely 
defined by the systematically absent reflexions. In solving 
the structure of such a crystal from X-ray diffraction data 
it is often convenient to start from the simplifying assump- 
tion that the structure is centrosymmetric, but once a rea- 
sonable trial structure has been found on this basis the 
question arises as to whether the actual structure is centro- 
symmetric or not. If one wishes to answer this question 
by least-squares analysis of the diffraction data, one might 
decide to simply expand the trial set of parameters over 
the questionable inversion centre and carry out the least- 
squares refinement in the corresponding non-centrosym- 
metric space group. This procedure is easily shown to be 
invalid. 

Since the structure factor derivatives with respect to 
pairs of centrosymmetrically related positional parameters 
are equal in magnitude and have opposite sign, while 
derivatives with respect to corresponding pairs of tern- 

perature factor parameters are equal, the normal equations 
are identical in pairs and the resulting normal equations 
matrix becomes singular. In such a case, full-matrix refine- 
ment would lead to catastrophic results, while diagonal or 
block-diagonal refinement is clearly equivalent to refine- 
ment in the originally assumed centrosymmetric space 
group. Small, random shifts may be applied to the centro- 
symmetric set of parameters so as to make it only ap- 
proximately centrosymmetric, but then the occurrence of 
an ill-conditioned set of normal equations has to be reck- 
oned with. Diamond (1958) has shown how an eigenvalue- 
eigenvector technique may be applied to obtain the maxi- 
mum amount  of information in similar cases. 
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The generalized Onsager relations applicable to transport property tensors for magnetic and non-magnetic 
crystals in the presence or absence of an external magnetic field were given by Kleiner. In this paper it is 
shown that the symmetry-restricted forms of the thermogalvanomagnetic property tensors conforming to 
Kleiner's prescription can be obtained from the forms of the polar and axial tensors appropriate to the 32 
classical point groups, making use of the rules given by Birss fol the equilibrium magnetic property tensors. 

We consider the effect of magnetic symmetry of a crystal 
on its thermogalvanomagnetic (TGM) properties. The elec- 
tric current density J~, the heat current density q~, the elec- 
tric field E~ and the negative temperature gradient G~ in a 
crystal are related as shown in the phenomenological equa- 
tions (1). The usual summation convention has been 
adopted throughout this paper. 

E~ = o~JJ: + ~jG~ , 

qt - J~ ~ = - fl~JJ~ + KijGj . (1) 
e 

is the chemical potential of the electrons, e is the elec- 
tronic charge, o~j is the electrical resistivity, i¢~j the thermal 
conductivity, e~j the thermoelectric power and p~j the prop- 
erty inverse to 0~. 

In the presence of an external magnetic field, the tensors 
0m ~J, ,Sij and ic~j can be expanded as power series in the 
field components Ht as in (2). 

0~j(H) = 0~J + o~j~H~ + o~mH~H~ + . . .  (2) 

The tensors of various ranks on the right-hand side of 
(2) define the TGM tensors. H~ is an axial vector whereas 
J~, q~, E~ and G~ are polar vectors. Consequently the TGM 
tensors of even rank are polar while those of an odd rank 
are axial. 

According to Kleiner (1966) the space-time symmetry of 
a crystal, in which these properties are observed, imposes 
the relations (3) and (4) between the corresponding tensor 
components. These relations which take account of the 
space-time symmetry of the crystal are the appropriate 
generalizations of the classical Onsager relations. 

A pure rotation in space is represented by a 3 x 3 orthog- 
onal matrix IIR~JII. The space-time operation of a pure 
rotation followed by time-invariance is denoted by R, and 
that followed by time-reversal by R. A rotation-inversion 
followed by time-invariance is denoted by R while that fol- 

lowed by time-reversal is denoted by R. 

For R or R: 0 ~ e z . . . =  R~mR~nR~vRzq...O,n,~m. (3a) 
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• For  R or R: o~jkz... = ( -  1 ) n - a R ~ m R j n R e ~ R z ~ .  • • On ,npq .  (3b) 

For  R or R: g#gz... = R ¢ m R j n R g ~ R z ~ . . . g m n ~ q .  (4a) 

For  R or __R: e~jkz... =(-1)~-2Ru~RjnR~pRt~...13~m~,g. (4b) 

The relations are given for a tensor of general rank n. 
Equations (3a) and (3b) are applicable to the diagonal 0 
and x tensors; (4a) and (4b) hold for the non-diagonal 
and ,8 tensors. 

We take up first the diagonal o and x tensors. Considering 
a 0 tensor, it is convenient to express this as the sum of its 
symmetric (o ~) and anti-symmetric (o ~) parts with respect 
to the first two indices as in (5) (Kleiner, 1966). The tensor 
is symmetric with regard to all permutations of the rest of 
the indices. 

o ~ .  • • = ½ ( o ~ J ~ .  • • + o J ~ .  • . )  + ½ ( o ~ J ~ .  • • - o j i ~ . . . )  

= 0 ~ + 0  ~ . ( 5 )  

For n odd, (3b) takes the form (6). 

o~]tc. = - -  R ~ m R j n R ~ p  s • • ° " • O n t l e l p  

= - -  R ~ r ~ R j n R ~ . . .  ~ , ~ ,  

O~jk . . . = - R ~ m R  ~ n R ~  • • • O,,,m," (6) 
- R ~ m R ~ n R g ~  a . 
- -  • • • O m n p  

For n even, (3b) takes the form (7). 

O~t~t. • • = R ~ m R ~ n R ~ o R ~ q .  . .On~p,~ 

- -  R ~ m R ~ n R ~ R t ~ t  a 
- -  • • • O mm,~ 

a 61 
Otjkt. • • = R ~ r a R ~ n R g p R z ~ .  . .Onmp~ (7) 

= - R ~ , ~ R ~ n R e ~ R u ~ .  a • • O ~ p q  • 

From (6), we find that the symmetric part of the odd 
rank, axial, transport property tensor transforms like the 
corresponding equilibrium, magnetic property tensor (C 
tensor)• Birss (1962) established that the form of such an 
axial C tensor of odd rank, appropriate to a double colour 
magnetic (M) group, is the same as that of the correspond- 
ing polar, equilibrium, non-magnetic property tensor (I 
tensor) appropriate to an associated classical group of the 
B type. The general rule given by Birss is" in a magnetic 
(M) group the forms of a polar C tensor of even rank and 
an axial C tensor of odd rank are the same as those of 
an axial I tensor of even rank and polar I tensor of odd 
rank respectively, in an associated classical group of the 
B type. Birss has given the list of A and B groups asso- 
ciated with the M groups. 

Again, from (6), we find that the anti-symmetric part of 
the odd rank, axial transport property tensor transforms 
under an R or R in the same manner as under the corre- 
sponding R or _R. It follows that the anti-symmetric part 
is unaffected by the magnetic structure of the crystal. Its 
form in a magnetic group is the same as that of a corre- 
sponding equilibrium property I tensor appropriate to the 
classical group obtained by replacing the _R and _R with the 
corresponding R and R in the group. 

From (7), we find that the symmetric part of an even 
rank transport property tensor is unaffected by the mag- 
netic structure of the crystal. Its form in a magnetic crystal 

is the same as that of the corresponding equilibrium I tensor 
appropriate to the classical group obtained from the mag- 
netic group by replacing R and R with the corresponding 
R and R. 

Again from (7), we find that the antisymmetric part of 
an even rank transport property tensor transforms like the 
corresponding equilibrium property C tensor. From Birss's 
rule stated above, it follows that the form of such a tensor 
in a magnetic group is the same as that of an equilibrium 
property axial I tensor of the same rank appropriate to the 
associated classical B type group. 

The above discussion applies to the ~ tensor as well. 
The forms of the general I tensors, axial or polar, up to 

the sixth rank, have been obtained by Fumi (1951, 1952) 
and Fieschi & Fumi (1953)• The forms of the tensors up to 
the fourth rank have been reproduced in Birss (1962). The 
necessary intrinsic symmetry with respect to the indices can 
be imposed on these general forms. 

The symmetry-restricted forms of an e or B tensor ap- 
propriate to a magnetic group are obtained by applying 
only the operations of the type R and R, i . e .  relations (4a). 
Relations (4b) are used only to obtain the form of an 
tensor from the known form of the corresponding B tensor 
or v i c e  v e r s a .  It follows that the forms of an ~ or P transport 
property tensor appropriate to a magnetic group is the 
same as that of an equilibrium property I tensor appro- 
priate to the sub-group of R and R operations contained 
in the magnetic group. 

The splitting of the .o tensor into symmetric and anti- 
symmetric parts is physically significant. The latter de- 
scribes the Hall effect and does not give rise to Joule heat. 
The former describes the magnetoresistance. In the non- 
magnetic crystals, the anti-symmetric part is an odd func- 
tion in the H~ components while the symmetric part is an 
even function. The transition into a magnetic state does 
not affect the anti-symmetric part of the odd function, i . e .  

the symmetry of the Hall effect does not change. Similarly, 
the symmetry of the magnetoresistance does not change. 
The transition into a magnetic state gives rise to a sym- 
metric part in the odd function, which is a different kind 
of magnetoresistance which depends on the direction of 
the external magnetic field and an anti-symmetric part in 
the even function which is a different kind of Hall effect 
that is unaffected by the direction of the magnetic field. 

The authors are grateful to Dr S.Bhagavantam for his 
guidance in the preparation of this paper. They wish to 
thank Dr Walter H. Kleiner for his helpful cor~ espondence. 
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